Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
J Am Chem Soc ; 146(15): 10640-10654, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568727

RESUMO

Foreign ions as additives are of great significance for realizing excellent control over the morphology of noble metal nanostructures in the state-of-the-art seed-mediated growth method; however, they remain largely unexplored in chiral synthesis. Here, we report on a Cu2+-dominated chiral growth strategy that can direct the growth of concave chiral Au nanoparticles with C3-dominant chiral centers. The introduction of trace amounts of Cu2+ ions in the seed-mediated chiral growth process is found to dominate the chirality transfer from chiral molecules to chiral nanoparticles, leading to the formation of chiral nanoparticles with a concave VC geometry. Both experimental and theoretical results further demonstrate the correlation between the nanoparticle structure and optical chirality for the concave chiral nanoparticle. The Cu2+ ion is found to dominate the chiral growth by selectively activating the deposition of Au atoms along the [110] and [111] directions, facilitating the formation of the concave VC. We further demonstrate that the Cu2+-dominated chiral growth strategy can be employed to generate a variety of concave chiral nanoparticles with enriched geometric chirality and desired chiroptical properties. Concave chiral nanoparticles also exhibit appealing catalytic activity and selectivity toward electrocatalytic oxidation of enantiomers in comparison to helicoidal nanoparticles. The ability to tune the geometric chirality in a controlled manner by simply manipulating the Cu2+ ions as additives opens up a promising strategy for creating chiral nanomaterials with increasing architectural diversity for chirality-dependent optical and catalytic applications.

2.
Front Med (Lausanne) ; 11: 1346400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628807

RESUMO

Background: Cardiac arrhythmias are very common in patients with obstructive sleep apnea (OSA), especially atrial fibrillation (AF) and nonsustained ventricular tachycardia (NVST). Cardiac autonomic dysfunction and structural remodeling caused by OSA provide the milieu for cardiac arrhythmia development. This study aimed to determine whether OSA is associated with various cardiac arrhythmias and investigate potential pathophysiologic pathways between them. Methods: The analysis covered 600 patients with clinical suspicion of OSA hospitalized in Renmin Hospital of Wuhan University between January 2020 and May 2023. After undergoing sleep apnea monitor, all subjects received laboratory tests, Holter electrocardiography, and Echocardiography. Results: Compared with those without OSA and adjusting for potential confounders, subjects with moderate OSA had three times the odds of AF (odds ratio [OR] 3.055; 95% confidence interval [CI], 1.002-9.316; p = 0.048). Subjects with severe OSA had three times the odds of AF (OR 3.881; 95% CI, 1.306-11.534; p = 0.015) and NSVT (OR 3.690; 95% CI, 0.809-16.036; p = 0.046). There were significant linear trends for the association between OSA severity with AF and NVST (p < 0.05). And this association was mediated by cardiac structural changes including left atrial diameter, left ventricular diastolic diameter, right atrial diameter and right ventricular diameter. In addition, the ratio of low-frequency and high-frequency individually mediated the association between severe OSA and NVST. Conclusion: This study demonstrated that severe OSA was independently associated with AF and NSVT, and this association was mediated by autonomic nervous system changes and cardiac structural remodeling.

3.
ACS Nano ; 18(13): 9543-9556, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518176

RESUMO

Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.

4.
BMC Pulm Med ; 24(1): 107, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439032

RESUMO

BACKGROUND: Mycoplasma pneumoniae infections have increased in China recently, causing some evidence of familial clustering. The purpose of this study was to compare the clinical features of parents and children in cases of familial clustering of Mycoplasma pneumoniae infection. METHODS: A retrospective analysis was performed on the cases of familial clustering of Mycoplasma pneumoniae infection, and the clinical characteristics of parents and children were compared. RESULTS: We identified 63 families, of these, 57 (65.5%) adults and 65 (94.2%) children required hospitalization. Fifty-seven adults (mean age 35.1 ± 4.6 years, 80.7% female) and 55 children (mean age 6.3 ± 3.9 years, 54.5% female) were included in the analysis. The incidence of mycoplasma infection in adults had increased gradually over the past year, while the rate in children had spiked sharply since June 2023. The clinical symptoms were similar in the two groups, mainly fever and cough. The peak temperature of children was higher than that of adults (39.1 ± 0.7℃ vs 38.6 ± 0.7℃, p = 0.004). Elevated lactate dehydrogenase was more common in children than in adults (77.8% vs 11.3%, p < 0.001). Bronchial pneumonia and bilateral involvement were more common in children, while adults usually had unilateral involvement. Three (60%) adults and 21 (52.5%) children were macrolide-resistant Mycoplasma pneumoniae infected. Children were more likely to be co-infected (65.5% vs 22.8%, p < .001). Macrolides were used in most children and quinolones were used in most adults. Ten (18.2%) children were diagnosed with severe Mycoplasma pneumoniae pneumonia, whereas all adults had mild disease. Children had a significantly longer fever duration than adults ((5.6 ± 2.2) days vs (4.1 ± 2.2) days, p = 0.002). No patient required mechanical ventilation or died. CONCLUSIONS: Mycoplasma pneumoniae infection shows a familial clustering epidemic trend at the turn of summer and autumn, with different clinical characteristics between parents and children.


Assuntos
Infecções por Mycoplasma , Pneumonia por Mycoplasma , Quinolonas , Adulto , Criança , Humanos , Feminino , Pré-Escolar , Masculino , Pneumonia por Mycoplasma/epidemiologia , Estudos Retrospectivos , Pais , Antibacterianos/uso terapêutico , Macrolídeos/uso terapêutico
5.
Mol Cell Proteomics ; 23(3): 100729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309569

RESUMO

Diagnosing, predicting disease outcome, and identifying effective treatment targets for virus-related cancers are lacking. Protein biomarkers have the potential to bridge the gap between prevention and treatment for these types of cancers. While it has been shown that certain antibodies against EBV proteins could be used to detect nasopharyngeal carcinoma (NPC), antibodies targeting are solely a tiny part of the about 80 proteins expressed by the EBV genome. Furthermore, it remains unclear what role other viruses play in NPC since many diseases are the result of multiple viral infections. For the first time, this study measured both IgA and IgG antibody responses against 646 viral proteins from 23 viruses in patients with NPC and control subjects using nucleic acid programmable protein arrays. Candidate seromarkers were then validated by ELISA using 1665 serum samples from three clinical cohorts. We demonstrated that the levels of five candidate seromarkers (EBV-BLLF3-IgA, EBV-BLRF2-IgA, EBV-BLRF2-IgG, EBV-BDLF1-IgA, EBV-BDLF1-IgG) in NPC patients were significantly elevated than controls. Additional examination revealed that NPC could be successfully diagnosed by combining the clinical biomarker EBNA1-IgA with the five anti-EBV antibodies. The sensitivity of the six-antibody signature at 95% specificity to diagnose NPC was comparable to the current clinically-approved biomarker combination, VCA-IgA, and EBNA1-IgA. However, the recombinant antigens of the five antibodies are easier to produce and standardize compared to the native viral VCA proteins. This suggests the potential replacement of the traditional VCA-IgA assay with the 5-antibodies combination to screen and diagnose NPC. Additionally, we investigated the prognostic significance of these seromarkers titers in NPC. We showed that NPC patients with elevated BLLF3-IgA and BDLF1-IgA titers in their serum exhibited significantly poorer disease-free survival, suggesting the potential of these two seromarkers as prognostic indicators of NPC. These findings will help develop serological tests to detect and treat NPC in the future.


Assuntos
Neoplasias Nasofaríngeas , Proteoma , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico , Herpesvirus Humano 4/genética , Proteínas do Capsídeo , Antígenos Virais , Biomarcadores , Imunoglobulina G , Imunoglobulina A
6.
Trends Parasitol ; 40(3): 214-229, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38355313

RESUMO

RNA modifications (epitranscriptome) - such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ) - modulate RNA processing, stability, interaction, and translation, thereby playing critical roles in the development, replication, virulence, metabolism, and life cycle adaptations of parasitic protozoa. Here, we summarize potential homologs of the major human RNA modification regulatory factors in parasites, outline current knowledge on how RNA modifications affect parasitic protozoa, highlight the regulation of RNA modifications and their crosstalk, and discuss current progress in exploring RNA modifications as potential drug targets. This review contributes to our understanding of epitranscriptomic regulation of parasitic protozoa biology and pathogenesis and provides new perspectives for the treatment of parasitic diseases.


Assuntos
Parasitos , Animais , Humanos , Parasitos/genética , Transcriptoma , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Biologia
7.
Theriogenology ; 219: 59-64, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401385

RESUMO

The BMPR1B gene is a major determinant of sheep reproductive capacity. Previous studies revealed that Q249R (FecB) is a profound variant of BMPR1B that influences the ovulation rate and litter size in sheep. However, unlike Q249R locus, the full spectrum of single nucleotide polymorphisms (SNPs) within BMPR1B has not been extensively studied. A systematic screen of SNPs in BMPR1B would facilitate the discovery of novel variants that are associated with litter size. This study aimed to investigate SNPs in the BMPR1B gene via whole genome sequence (WGS) data from 2409 individuals of 75 sheep breeds worldwide. Herein, a total of 9688 variants were screened, among which 15 were coding variants and 8 were novel changes. Specifically, we presented the most comprehensive frequency distribution map of the well-known FecB mutation to date. Besides, among the above-mentioned SNPs, one synonymous mutation (g.30050773C > T) was found to be likely under selection and is potentially associated with fecundity in Duolang sheep. Thus, our study greatly expands the variation repertoire of the ovine BMPR1B gene and provides a valuable resource for exploring causative mutations and genetic markers associated with litter size.


Assuntos
Fertilidade , Polimorfismo de Nucleotídeo Único , Humanos , Gravidez , Feminino , Animais , Ovinos/genética , Tamanho da Ninhada de Vivíparos/genética , Mutação , Marcadores Genéticos , Fertilidade/genética , Genótipo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética
8.
ACS Appl Mater Interfaces ; 16(6): 7141-7151, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305178

RESUMO

Developing highly efficient and low-cost bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting poses significant challenges. In this study, a novel bifunctional electrocatalyst, Irn-CoMoPOx, was achieved via incorporating low-loading Ir single atoms and clusters with the high-valence Mo6+ modified CoPOx nanosheets. The Irn-CoMoPOx catalyst demonstrates remarkable low overpotentials of 222 mV and 36 mV for the OER and HER, respectively, in delivering a current density of 10 mA cm-2. When employed as both the anode and cathode catalyst in overall water splitting, the Irn-CoMoPOx∥Irn-CoMoPOx configuration exhibits a superior cell voltage of 1.53 V, outperforming the benchmark Pt/C∥IrO2 electrolytic cell (1.60 V) for achieving the current density of 10 mA cm-2. Benefiting from the high-valence of Mo species, the metal-support interaction of Irn-CoMoPOx was greatly strengthened, resulting in an order of magnitude increase in the mass activity of Ir for the HER. The high valence of non-noble metals plays a crucial role in tuning the local electronic configurations and optimizing the adsorption energies of the intermediates, which synergistically improves the overall performance of Ir in water splitting. The study provides valuable insights for future research in the utilization of Ir-based bifunctional catalysts for overall water electrocatalysis applications.

9.
Animals (Basel) ; 14(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396560

RESUMO

The economic efficiency of sheep breeding can be improved by enhancing sheep productivity. A recent genome-wide association study (GWAS) unveiled the potential impact of the MAST4 gene on prolificacy traits in Australian White sheep (AUW)). Herein, whole-genome sequencing (WGS) data from 26 different sheep breeds worldwide (n = 1507), including diverse meat, wool, milk, or dual-purpose sheep breed types from China, Europe, and Africa, were used. Moreover, polymerase chain reaction (PCR) genotyping of the MAST4 gene polymorphisms in (n = 566) Australian white sheep (AUW) was performed. The 3 identified polymorphisms were not homogeneously distributed across the 26 examined sheep breeds. Findings revealed prevalent polymorphisms (P3-ins-29 bp and P6-del-21 bp) with varying frequencies (0.02 to 0.97) across 26 breeds, while P5-del-24 bp was presented in 24 out of 26 breeds. Interestingly, the frequency of the P3-ins-29 bp variant was markedly higher in Chinese meat or dual-purpose sheep breeds, while the other two variants also showed moderate frequencies in meat breeds. Notably, association analysis indicated that all InDels were associated with AUW sheep litter size (p < 0.05). These results suggest that these InDels within the MAST4 gene could be useful in marker-assisted selection in sheep breeding.

10.
J Imaging Inform Med ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388868

RESUMO

Automated recognition of heart shunts using saline contrast transthoracic echocardiography (SC-TTE) has the potential to transform clinical practice, enabling non-experts to assess heart shunt lesions. This study aims to develop a fully automated and scalable analysis pipeline for distinguishing heart shunts, utilizing a deep neural network-based framework. The pipeline consists of three steps: (1) chamber segmentation, (2) ultrasound microbubble localization, and (3) disease classification model establishment. The study's normal control group included 91 patients with intracardiac shunts, 61 patients with extracardiac shunts, and 84 asymptomatic individuals. Participants' SC-TTE images were segmented using the U-Net model to obtain cardiac chambers. The segmentation results were combined with ultrasound microbubble localization to generate multivariate time series data on microbubble counts in each chamber. A classification model was then trained using this data to distinguish between intracardiac and extracardiac shunts. The proposed framework accurately segmented heart chambers (dice coefficient = 0.92 ± 0.1) and localized microbubbles. The disease classification model achieved high accuracy, sensitivity, specificity, F1 score, kappa value, and AUC value for both intracardiac and extracardiac shunts. For intracardiac shunts, accuracy was 0.875 ± 0.008, sensitivity was 0.891 ± 0.002, specificity was 0.865 ± 0.012, F1 score was 0.836 ± 0.011, kappa value was 0.735 ± 0.017, and AUC value was 0.942 ± 0.014. For extracardiac shunts, accuracy was 0.902 ± 0.007, sensitivity was 0.763 ± 0.014, specificity was 0.966 ± 0.008, F1 score was 0.830 ± 0.012, kappa value was 0.762 ± 0.017, and AUC value was 0.916 ± 0.006. The proposed framework utilizing deep neural networks offers a fast, convenient, and accurate method for identifying intracardiac and extracardiac shunts. It aids in shunt recognition and generates valuable quantitative indices, assisting clinicians in diagnosing these conditions.

11.
Opt Express ; 32(2): 2786-2803, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297799

RESUMO

Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.

12.
Nanoscale Adv ; 6(2): 318-336, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235081

RESUMO

Chiral hybrid nanomaterials with multiple components provide a highly promising approach for the integration of desired chirality with other functionalities into one single nanoscale entity. However, precise control over multicomponent chiral plasmonic hybrid nanomaterials to enable their application in diverse and complex scenarios remains a significant challenge. In this review, our focus lies on the recent advances in the preparation and application of multicomponent chiral plasmonic hybrid nanomaterials, with an emphasis on synthetic strategies and emerging applications. We first systematically elucidate preparation methods for multicomponent chiral plasmonic hybrid nanomaterials encompassing the following approaches: physical deposition approach, galvanic replacement reaction, chiral molecule-mediated, chiral heterostructure, circularly polarized light-mediated, magnetically induced, and chiral assembly. Furthermore, we highlight emerging applications of multicomponent chiral plasmonic hybrid nanomaterials in chirality sensing, enantioselective catalysis, and biomedicine. Finally, we provide an outlook on the challenges and opportunities in the field of multicomponent chiral plasmonic hybrid nanomaterials. In-depth investigations of these multicomponent chiral hybrid nanomaterials will pave the way for the rational design of chiral hybrid nanostructures with desirable functionalities for emerging technological applications.

13.
BMC Infect Dis ; 24(1): 117, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263011

RESUMO

PURPOSE: We aimed to analyze the clinical features of COVID-19-associated pulmonary aspergillosis (CAPA) during the SARS-CoV-2 Omicron variant pandemic and to reveal the risk factors for CAPA and death. METHODS: A retrospective cohort study was conducted on 168 CAPA patients from December 8, 2022 to January 31, 2023. 168 COVID-19 patients without secondary fungal infection during this period were matched 1:1 using propensity score matching as controls. RESULTS: The incidence of CAPA was 3.8% (168/4421). Compared with patients without fungal infection, CAPA patients had a higher mortality (43.5% vs. 10.1%, P < 0.001). Patients in the death group (n = 73) were more likely to be admitted to ICU (91.8% vs. 26.3%, p < 0.001), had a shorter ICU length of hospitalization (10 (IQR, 6 ~ 16.5) days vs. 14 (IQR, 8 ~ 37) days, p = 0.012). Immunocompromised status (p = 0.023), NLR ≥ 5.7 (p = 0.004), CRP ≥ 50 mg/L (p = 0.043), and the number of antibiotics ≥ 3 (p < 0.001) were all risk factors for CAPA; NLR ≥ 5.7 (p = 0.009) and the number of antibiotics ≥ 3 (p = 0.018) were all independent risk factors for death. CONCLUSIONS: During the Omicron variant pandemic, CAPA increased death and ICU length of hospitalization. The risk factors of CAPA and death obtained from the study can help us further understand the disease characteristics of CAPA and better guide our clinical decision-making.


Assuntos
COVID-19 , Coinfecção , Aspergilose Pulmonar , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Antibacterianos , Progressão da Doença
14.
J Clin Sleep Med ; 20(1): 31-38, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37593900

RESUMO

STUDY OBJECTIVES: Polycystic ovary syndrome (PCOS) confers a high risk of obstructive sleep apnea (OSA). Here we investigated the effect of OSA on first in vitro fertilization (IVF) cycle metrics and outcomes in patients with PCOS. METHODS: This was a prospective cohort study of patients with PCOS undergoing their first IVF at a single tertiary center between October 1, 2021, and September 30, 2022. Patients were screened for OSA before IVF and grouped accordingly. Clinical and IVF cycle data were compared between groups. RESULTS: OSA was found in 37.2% of 156 patients with PCOS, with longer infertility duration (4.3 ± 2.5 vs. 3.4 ± 2.0 years) and lower levels of anti-Müllerian and luteinizing hormones than patients without OSA (6.44 ± 2.96 vs 8.69 ± 4.03 µg/L and 6.30 ± 5.02 vs 8.46 ± 6.09 U/L). Antral follicle count was lower in patients with OSA (28.9 ± 12.4 vs 33.2 ± 12.9). During ovarian stimulation, patients with OSA required significantly higher doses of gonadotropin (2080.8 ± 1008.7 vs 1682.8 ± 619.9 U) and had lower peak estradiol level (4473.5 ± 2693.0 vs 5455.7 ± 2955.1 pmol/L) and fewer retrieved oocytes, high-quality, and available embryos (17.8 ± 7.2 vs 21.9 ± 10.5, 4.5 ± 4.4 vs 6.2 ± 4.6, 5.2 ± 4.3 vs 7.4 ± 5.0). Eleven patients were excluded for having no embryos or missing transfer. Therefore, we analyzed the outcome of the first embryo transfer in 145 patients. The biochemical and clinical pregnancy rates were lower in patients with OSA than patients without OSA (51.9% vs 66.7% and 42.3% vs 60.2%). OSA was independently associated with clinical pregnancy rate after controlling for several confounders (P = .043). CONCLUSIONS: OSA impairs female fertility in patients with polycystic ovary syndrome, suggesting an adverse effect on in vitro fertilization cycle stimulation characteristics and clinical outcomes. CITATION: Zhang Q, Wang Z, Ding J, et al. Effect of obstructive sleep apnea on in vitro fertilization outcomes in women with polycystic ovary syndrome. J Clin Sleep Med. 2024;20(1):31-38.


Assuntos
Síndrome do Ovário Policístico , Apneia Obstrutiva do Sono , Gravidez , Feminino , Humanos , Síndrome do Ovário Policístico/complicações , Estudos Prospectivos , Fertilização In Vitro , Transferência Embrionária , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/terapia , Estudos Retrospectivos
15.
Nano Lett ; 23(23): 11376-11384, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038244

RESUMO

Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.

16.
Small ; : e2310353, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150652

RESUMO

Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.

17.
Parasit Vectors ; 16(1): 421, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974285

RESUMO

BACKGROUND: The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS: We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS: We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS: These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Animais , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Mutação , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Ferro/uso terapêutico
18.
Epigenomics ; 15(21): 1101-1119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990886

RESUMO

Aim: Conservative treatment approaches for thyroid carcinoma (TC) patients with wild-type B-type Raf kinase (BRAF) pose risks of long-term recurrence. The association of DNA methylation with TC metastasis is unclear. Patients & methods: Here we analyzed data from 179 BRAF wild-type TC patients in the The Cancer Genome Atlas database, identifying significant metastasis-associated CpGs. A logistic regression model was developed and validated for discriminating lymphatic metastasis in BRAF wild-type TC. Results: The model showed high accuracy (AUC: 0.924 training set; 0.812 and 0.773 external cohorts). TAGLN, MRPL4, CLDN10 and GRIK2 emerged as diagnostic markers. GRIK2, downregulated due to promoter hypermethylation, acted as a TC suppressor. Conclusion: Our 5-CpG epigenetic signature effectively discriminates lymphatic metastasis in BRAF wild-type TC, highlighting GRIK2's tumor-suppressive role influenced by promoter hypermethylation.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Humanos , Metilação de DNA , Epigênese Genética , Metástase Linfática , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
20.
Nat Commun ; 14(1): 7907, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036536

RESUMO

Pyroelectric energy harvesting has received increasing attention due to its ability to convert low-grade waste heat into electricity. However, the low output energy density driven by low-grade temperature limits its practical applications. Here, we show a high-performance hybrid BNT-BZT-xGaN thermal energy harvesting system with environmentally friendly lead-free BNT-BZT pyroelectric matrix and high thermal conductivity GaN as dopant. The theoretical analysis of BNT-BZT and BNT-BZT-xGaN with x = 0.1 wt% suggests that the introduction of GaN facilitates the resonance vibration between Ga and Ti, O atoms, which not only contributes to the enhancement of the lattice heat conduction, but also improves the vibration of TiO6 octahedra, resulting in simultaneous improvement of thermal conductivity and pyroelectric coefficient. Therefore, a thermoelectric coupling enhanced energy harvesting density of 80 µJ cm-3 has been achieved in BNT-BZT-xGaN ceramics with x = 0.1 wt% driven by a temperature variation of 2 oC, at the optical load resistance of 600 MΩ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...